

ACTIVE SIDEBAND OPTIMIZATION (ASOplusTM)

ADVANCE DATA

- VHS, S-VHS, VIDEO 8, HI-8 VCR APPLICA-TIONS
- PICTURE SHARPNESS IMPROVEMENT
- S/N RATIO IMPROVEMENT WHEN PLAYING **BACK AGED TAPES**
- REDUCTION OF THE DISTURBING TEAR-ING EFFECTS
- SMALL DETAILS ENHANCEMENT
- ADJUSTMENT FREE
- 5V POWER SUPPLY

DESCRIPTION

The TEA5750 IC improves the picture sharpness by active correction of the phase of the FM playback signal. It also allows the optimization of the S/N ratio by autoadaptative bandwidth adjustment. For further information please refer to the Application Note AN551.

PIN CONNECTIONS

February 1993

This is advance information on a new product now in development or undergoing evaluation. Details a re subject to change without no tice.

BLOCK DIAGRAM

FUNCTIONAL DESCRIPTION

Located between the head amplifier and the FM demodulator, the TEA5750, which replaces the commonly used FM equalizer, features the two main following functions :

– Dynamic compensation of the phase errors induced in the FM playback signal (errors coming from the limited bandwidth of the front end part of the playback channel : tape, heads rotary transformer, head amplifiers). This compensation improves the fall and rise times of the demodulated signal, and therefore improves the picture sharpness. In the particular case of VHS, TEA5750 leads to flat frequency response of the demodulated signal in excess of 3MHz (Figure 1)

Figure 1a : Spectrum of the Playback FM Carrier (VHS case)

– Monitoring of the overall quality of the FM playback signal. In doing so, the TEA5750 automatically and continuously adapts the frequency response of the FM playback signal delivered to the FM demodulator in such a way that the S/N ratio is improved. This function is particularly active in case of aged tapes (Figure 2).

<u>Important remark</u>: Unlike FM equalizer solution, the active side band optimization (ASO) performed by the TEA5750 does not trade off picture sharpness against noise sensitivity.

ACTIVE PHASE SHIFTING

(phase errors compensation)

The amplitude of the signal delivered by the heads changes with the frequency (amplitude decreases when frequency increases).

In combination with an external LC filter the TEA5750 transforms this natural amplitude modulation into phase shifting which compensates the delays (or phase errors) induced during the fast frequency deviations.

Phase Shift Generation

The core of the phase shifting function is given in Figure 3. Under normal conditions, the V_{PS} voltage at the phase shift input reaches the threshold of the level controlled diodes. Then for each half cycle, as long as the diodes conduct, a magnetic flux is stored in the inductance L. At the phase shift input pin, the next zero crossing time is delayed respect to the input signal V_{IN} for a duration θ which is proportional to the energy W_L stored in the inductance L.

The energy W₁ increases versus input amplitude and period, consequently θ increases when the

V_{IN} $V_{\rm IN}$ V_{PS} From Head Amplifier To FM demodulator С Т I_{c} θ 11 4 Flux in I threshold control

Figure 3: Phase Shift Function Core

input frequency decreases.

Black to White Transients (fast increases of the FM carrier frequency) (Figure 4a)

In this case, the input FM signal changes from large amplitude and long period to small amplitude and short period. Consequently the delay produced by the phase shifting circuit changes from large values to small values. At the instance of a black to white transient, the phase shifting induces a long period to followed by a short periof t1. This results in a faster frequency shift and in shorter rise times at the output of the FM demodulator.

White to Black Transients (fast decreases of the FM carrier frequency) (Figure 4b)

In this opposite case, the input FM signal changes from small amplitudes and short periods to large amplitudes and long periods. The corresponding delays will encrease. So during white to black transient, the period t₁ will be increased respect to the input period t_H. This results in a faster frequency change and shorter fall times at the output of the FM demodulator.

PLAYBACK SIGNAL QUALITY MONITORING

(see Figure 5)

The TEA5750 monitors the average quality of the playback signal by counting the occurrence rate of missing zero crossing. This phenomena can be noticed in the following cases :

- weak and noisy playback signal
- poor quality tape

At each missing zero crossing in the FM signal, the error memory function of the TEA5750 charges the C_{MEM} capacitor with a fixed amount of charges (typ. 40µA x 800µs). Then the resulting voltage V_{MEM} at Pin 12 proportionnaly encreases with the error rate. Three operating cases can be distinguished

(see Figure 6).

- V_{MEN} < 0.8V : Low error rate, the FM playback signal is good quality. No correction is implemented.
- 0.8V ≤ V_{MEN} ≤ 1.2V : The FM playback signal is poor quality and the softswitch is gradually turned on, modifying then the correcting filter characteristics. The demodulated signal bandwidth is reduced in its upper part (≥ 2.5MHz).
- 1.2V < V_{MEM} : The FM signal is very poor quality. The softswitch keeps conducting but additionnally the active phase shifting is reduced by encreasing the clamping threshold of the diodes. This induces a further video bandwidth reduction.

Figure 6: Video Bandwidth Correction versus FM Signal Quality

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{DD}	Power Supply Voltage	6	V
T _{oper}	Operating Temperature	0, +70	°C
Tj	Junction Temperature	+150	°C

THERMAL DATA

Symbol	Parameter		Value	Unit
R _{th (j-a)}	Junction-ambient Thermal Resistance	Max.	160	°C/W

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min.	Тур.	Max.	Unit
V _{DD}	Power Supply Voltage	4.5	V		
R ₁	Biasing Resistor	1kΩ at 1%			
R ₇	Hysteresis Adjustment			10	kΩ
V4	Error Detector Adjustment	1.2			V

ELECTRICAL OPERATING CHARACTERISTICS

 $5V\pm10\%$ and $0^oC < T_{amb} < 70^oC$ unless otherwise specified

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
IDD	Supply Current			24		mA
VREF	Reference Voltage		1.16	1.23	1.28	V

INPUT AMPLIFIER

R _{IN1}	Input Impedance			28	50	Ω
R _{OUT1}	Output Impedance			17	30	Ω
C _{IN1}	Input Capacitor			3	5	pF
G1	Current to Voltage Gain	Adjusted by external resistor at Pin 13 $\begin{array}{l} R_2 = 1 k \Omega \\ R_2 = 2 k \Omega \\ R_2 = 3 k \Omega \end{array}$		2.1 3.8 5.2		V/mA V/mA V/mA
dG1	Gain Dispersion	$R_2 = 1k\Omega$ or $R_2 = 2k\Omega$ or $R_2 = 3k\Omega$	0		1	dB
BW1	Bandwidth (-3dB)	0dB at f = 4.3MHz, $R_{Load} = \infty$	12	15		MHz
AC1	Max. Output Voltage Swing		3			V _{PP}
IN1PP	Input Current Capability	Linearity < 1%	1			mApp
IOUT1PP	Output Current Capability	Linearity < 1%	1.5			mA _{PP}

OUTPUT AMPLIFIER

R _{IN2}	Input Impedance			13	25	Ω
R _{OUT2}	Output Impedance			30	60	Ω
CIN2	Input Capacitor			3	5	pF
G2	Open Loop Current to Voltage Gain		700	1000	1300	V/mA
BW2	Bandwidth (-3dB)		12	15		MHz
I _{IN2PP}	Input Current Capability	Linearity < 1%	1.5			mA _{PP}
IOUT2PP	Output Current Capability	Linearity < 1%	1			mApp

ERROR MEMORY

V _{TH}	Threshold Voltage	0.95	1	1.05	V
I _{Leak}	Leakage Current at Pin 12			200	nA
ΔQ	Injected Charge Unit per detected error from Pin 12		32		nC

ELECTRICAL OPERATING CHARACTERISTICS

 $5V\pm10\%$ and $0^{o}C < T_{amb} < 70^{o}C$ unless otherwise specified

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
PHASE SH	IFTER					
IPHSHIFT	Current Capability		1			mA _{PP}
CIPHSHIFT	Capacitance at Pin 5			3	5	pF
V _{CLAMP1} Peak-to-peak Clamp Level at Pin 5 V _{CLAMP2} V _{CLAMP3}		$\begin{array}{l} V_{12} < V_{TH}, \ I_5 = 1 m A_{PP} \\ V_{12} = 1.5 V, \ I_5 = 500 \mu A_{PP} \\ V_{12} = 2.5 V, \ I_5 = 500 \mu A_{PP} \end{array}$		0.34 0.9 2.0		V V V
ERROR DE	TECTOR					
ΔV	Hysteresis Voltage	$R_2 = 1k\Omega$		20		mV _{PP}
I _{Leak1}	Leakage Current at Pin 4				200	nA
V_{E3}	3T Detection Threshold Voltage at Pin 4	(see Note 1)			2.7	V
V_{E4}	4T Detection Threshold Voltage at Pin 4	(see Note 2)			3.7	V
SOFTSWIT	СН					
V_{SF1}	Voltage at Pin 12	To get input impedance at Pin 1 lower than 100Ω		1.6		V
V_{SF2}	Voltage at Pin 12	To get input impedance at Pin 1 higher than $1k\Omega$		0.8		V

Notes: 1. V_{E3}: Voltage to be applied at Pin 4 to detect 3T long duration without zero crossing. 3T : Three times the average duration between zero crossings of the FM signal (ex: 3 x 116ns in case of VHS).
2. Same as note 1, but in case of four times the average duration between zero crossings of the FM signal.

INPUT/OUTPUT EQUIVALENT INTERNAL CIRCUITS

Pin N°	Name	Equivalent Circuit	Description
1	SOFTSW	VDD T T T T T T T T T T T T T T T T T T	Low-pass filter switch, R _{DS ON} value versus V ₁₂ (see Figure 7)
2	HYSTLVL		Error detection hysteresis level adjustment $R_{EXT (max.)} = 10 k\Omega$

Pin N [°]	Name	Equivalent Circuit	Description
7	IN2	S43751-0525	Output amplifier input
8			To be connected to ground
9	OUT2	sdata solutions and the solution of the soluti	Output amplifier output V _{9(DC)} = 2V _{BE} , V _{9 P-P (AC) (max.)} = 0.75V
10	V _{DD}		Power Supply

Pin N°	Name	Equivalent Circuit	Description
11	IN1	SHIT-052	Input amplifier input V _{11(DC)} = 2V _{BE}
12	ERR-MEM	V _{DD}	Error rate store

Figure 7 : RDS ON VERSUS VERR-MEM ON Pin 12

Figure 8 : Clamp Voltage versus VERR-MEM on Pin 12

TYPICAL APPLICATION DIAGRAM

PACKAGE MECHANICAL DATA

14 PINS - PLASTIC MICROPACKAGE

Dimonoiono		Millimeters			Inches		
Dimensions	Min.	Тур.	Max.	Min.	Тур.	Max.	
А			1.75			0.069	
a1	0.1		0.2	0.004		0.008	
a2			1.6			0.063	
b	0.35		0.46	0.014		0.018	
b1	0.19		0.25	0.007		0.010	
С		0.5			0.020		
c1			45 [°]	(typ.)			
D	8.55		8.75	0.336		0.344	
E	5.8		6.2	0.228		0.244	
е		1.27			0.050		
e3		7.62			0.300		
F	3.8		4.0	0.150		0.157	
G	4.6		5.3	0.181		0.208	
L	0.5		1.27	0.020		0.050	
М			0.68			0.027	
S			8° (max.)			

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No licence is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectronics.

© 1994 SGS-THOMSON Microelectronics - All Rights Reserved

Purchase of I²C Components of SGS-THOMSON Microelectronics, conveys a license under the Philips I²C Patent. Rights to use these components in a I²C system, is granted provided that the system conforms to the I²C Standard Specifications as defined by Philips.

SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - China - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.

TM ASOplus is a trademark of NOKIA CONSUMER ELECTRONICS

